Analyse Power Consumption by Mobile Applications Using Fuzzy Clustering Approach
نویسندگان
چکیده مقاله:
With the advancements in mobile technology and its utilization in every facet of life, mobile popularity has enhanced exponentially. The biggest constraint in the utility of mobile devices is that they are powered with batteries. Optimizing mobile’s size and weight is always the choice of designer, which led limited size and capacity of battery used in mobile phone. In this paper analysis of the energy consumption of some popular mobile apps is done using data mining technique. A large variety of mobile apps with differently functionality are executed on a smart phone. The power consumption of these apps is measured using Power Tutor. For holistic analysis these mobile apps are executed in different environment, which are created by varying the setting and internet facilities. Fuzzy Clustering approach is used to club the mobile apps based on similarity of the behaviour with respect to power consumption. Power consumption behaviour for each cluster and apps lying in overlapping zone is discussed in detail. The study gives the insight that power need of an app is dependent on the environment and code which can be used by app developers for creating an optimized energy app.
منابع مشابه
A Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملEnergy Consumption Optimization using Clustering in Mobile Ad-Hoc Network
In this In MANET (Mobile Ad hoc Network) nodes are not fixed on one position that’s why proper communication is very critical issue. The nodes in MANET depend on battery for communication. Therefore energy efficiency is an important design deliberation to extend the lifetime of networks. The cluster based approach provides the efficient communication in the form of group. The nodes in Mobile ad...
متن کاملNew Approach for Customer Clustering by Integrating the LRFM Model and Fuzzy Inference System
This study aimed at providing a systematic method to analyze the characteristics of customers’ purchasing behavior in order to improve the performance of customer relationship management system. For this purpose, the improved model of LRFM (including Length, Recency, Frequency, and Monetary indices) was utilized which is now a more common model than the basic RFM model apt for analyzing the cus...
متن کاملImage Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 31 شماره 12
صفحات 2037- 2043
تاریخ انتشار 2018-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023